

Rotation Angle

- When an object rotates, all the points along the radius move through the same angle in the same amount of time.
- Therefore, it is convenient to measure position, velocity, and acceleration in terms of angle.

Angular Rotation

- We define the rotation angle $\Delta \theta$ to be the ratio of the arc length to the radius of curvature.

$$
\Delta \theta=\frac{\Delta s}{r}
$$

The arc length Δs is the distance traveled along a circular path and r is the radius of curvature of the circular path.

- For one complete revolution, the arc length is the circumference of a circle of radius r.
- The circumference of a circle is $2 \pi r$.
- Therefore, for one complete revolution

$$
\Delta \theta=\frac{\Delta s}{r}=\frac{2 \pi r}{r}=2 \pi
$$

- This defines the units we use to measure angular rotation, radians (rad).

$$
2 \pi \mathrm{rad}=1 \text { revolution }=360^{\circ}
$$

Angular Velocity

- Rate of change of an angle.

$$
\omega=\frac{\Delta \theta}{\Delta t} \quad \text { Units: } \mathrm{rad}^{-1}
$$

\qquad
\qquad
\qquad
\qquad

- Angular velocity ω is analogous to linear \qquad velocity v.
- A particle moves an arc length of Δs in time Δt.
- The velocity of the object is $v=\frac{\Delta s}{\Delta t}$
- From the definition of angular rotation $\Delta s=r \Delta \theta$
- Substituting gives $v=\frac{r \Delta \theta}{\Delta t}=r \omega$

$$
v=\omega r \quad \text { or } \quad \omega=\frac{v}{r}
$$

- This relationship tells us two things...
- An object moving with an angular velocity ω has a tangential (linear) velocity at any point is equal to ωr.

- A rolling object with a linear velocity of v is rotating with an angular velocity of ω.

Period and Frequency

- The concepts of period and frequency are \qquad often used with circular motion.
- The period, T, is the time required for one rotation.
- The frequency, f, is the number of rotations per second.

$$
T=\frac{1}{f}
$$

- Angular velocity can be expressed in terms of period and frequency.

$$
\begin{gathered}
\omega=\frac{v}{r} \quad v=\frac{x}{t}=\frac{2 \pi r}{T} \\
\omega=\frac{2 \pi}{T}=2 \pi f
\end{gathered}
$$

Due to this relationship, angular velocity
\qquad
\qquad
\qquad
\qquad is also referred to as angular frequency.

Uniform Circular Motion

- An object that moves in a circle at \qquad constant tangential (linear) speed v, is said to experience uniform circular \qquad motion.
- The speed may be constant but the \qquad direction is changing.
- This means that the object is accelerating.
- The acceleration is in the direction of the \qquad change in velocity.
- The direction of the acceleration is towards the center of the circular path.

- This acceleration is called centripetal acceleration (towards the center or center seeking).

Deriving an Equation for Centripetal Acceleration

- During Δt the object moves
from B to C
- Connecting these points to the center gives triangle ABC.
$a=\frac{\Delta v}{\Delta t}$
$\Delta v=v_{2}-v_{1}$
- The vector subtraction gives triangle $P Q R$.

\qquad
\qquad
\qquad
\qquad
\qquad
- $v_{1}=v_{2}=v$
- The two triangles are similar triangles, therefore

$$
\frac{\Delta v}{v}=\frac{\Delta s}{r}
$$

- Solving for Δv

$$
\Delta v=\frac{v \Delta s}{r}
$$

- Divide both sides by Δt

$$
\frac{\Delta v}{\Delta t}=a \begin{gathered}
\frac{\Delta v}{\Delta t}=\frac{v \Delta s}{r \Delta t} \\
a_{c}=\frac{v^{2}}{r}
\end{gathered}
$$

- It is also useful to express centripetal acceleration in terms of angular velocity, period and frequency.

Substituting $v=r \omega$ into the previous expression

$$
a_{c}=r \omega^{2}
$$

Substituting $\omega=\frac{2 \pi}{T}$

$$
a_{c}=\frac{4 \pi^{2} r}{T^{2}}
$$

Substituting $f=\frac{1}{T} \quad a_{c}=4 \pi^{2} r f^{2}$
Substituting $f=\frac{1}{T} \quad a_{c}=4 \pi^{2} r f^{2}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$\quad a_{c}=\frac{4 \pi^{2} r}{T^{2}}$

Example 1

- A car drives around a curve of radius 500.0 m at a speed of $25 \mathrm{~m} / \mathrm{s}$. Calculate the centripetal acceleration.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\begin{aligned}
& a_{c}=\frac{v^{2}}{r} \\
& a_{c}=\frac{(25)^{2}}{500} \\
& a_{c}=1.25 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Example 2

- A 150 g ball at the end of a string is \qquad revolving in a horizontal circle of radius 0.60 m . The ball makes 2 revolutions in \qquad one second. Calculate the centripetal acceleration of the ball.

$$
\begin{aligned}
& a_{c}=\frac{v^{2}}{r}=r \omega^{2}=4 \pi^{2} r f^{2} \\
& a_{c}=4 \pi^{2}(0.6)(2)^{2} \\
& a_{c}=95 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Centripetal Force

- Any force or combination of forces can \qquad cause a centripetal or radial acceleration.
- Any net force causing uniform circular
\qquad motion is called a centripetal force.
- The direction of a centripetal force is toward the center of curvature, the same as the direction of centripetal acceleration.
- According to Newton's second law of motion, $F_{\text {net }}=m a$
- For uniform circular motion, the acceleration is the centripetal acceleration ($a=a_{c}$).
- Thus, the magnitude of centripetal force is

$$
\begin{gathered}
F_{c}=m a_{c} \\
\text { or } \\
F_{c}=m \frac{v^{2}}{r}=r \omega^{2}
\end{gathered}
$$

Example 1

- A 1200 kg car travels around a 500.0 m radius unbanked curve at $25.0 \mathrm{~m} / \mathrm{s}$. Calculate the minimum static coefficient of friction between the tires and the road required to keep the car from slipping.

$$
\begin{aligned}
& F_{n e t}=m a \\
& \text { Since the car is moving in a circle } \\
& F_{n e t}=F_{c}=m a_{c} \\
& F_{f}=m a_{c} \\
& \mu F_{N}=\mu F_{g}=\mu m g=\frac{m v^{2}}{r} \\
& \mu=\frac{v^{2}}{g r} \\
& \mu=\frac{(25)^{2}}{(9.8)(500)}=0.13
\end{aligned}
$$

Example 2

- A 1200 kg car travels around a 500.0 m \qquad radius curve at $25.0 \mathrm{~m} / \mathrm{s}$. The curve is banked 20°. Calculate the coefficient of friction between the tires and the road required to keep the car from slipping.

F_{N}	$F_{n e t}=m a$ Since the car is moving in a circle $F_{n e t}=F_{c}=m a_{c}$ $F_{f}=m a_{c}$ $\mu F_{N}=\mu F_{g}=\mu m g=\frac{m v^{2}}{r}$ $\mu=\frac{v^{2}}{g r}$ $\mu=\frac{(25)^{2}}{(9.8)(500)}=0.13$

